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Abstract. Motivated by the data from Super-Kamiokande and elsewhere indicating oscillations of atmo-
spheric and solar neutrinos, we study charged-lepton-flavour violation, in particular the radiative decays
µ → eγ and τ → µγ, but also commenting on µ → 3e and τ → 3µ/e decays, as well as µ → e conver-
sion on nuclei. We first show how the renormalization group may be used to calculate flavour-violating soft
supersymmetry-breaking masses for charged sleptons and sneutrinos in models with universal input param-
eters. Subsequently, we classify possible patterns of lepton-flavour violation in the context of phenomeno-
logical neutrino mass textures that accommodate the Super-Kamiokande data, giving examples based on
Abelian flavour symmetries. Then we calculate in these examples rates for µ → eγ and τ → µγ, which
may be close to the present experimental upper limits, and show how they may distinguish between the
different generic mixing patterns. The rates are promisingly large when the soft supersymmetry-breaking
mass parameters are chosen to be consistent with the cosmological relic-density constraints. In addition,
we discuss µ → e conversion on Titanium, which may also be accessible to future experiments.

1 Introduction

There has been increasing interest in massive neutrinos
during the past year, triggered principally by the Super-
Kamiokande data [1] on the νµ/νe ratio in the atmo-
sphere. The latter was found to be significantly smaller
than the Standard Model expectations, with a character-
istic azimuthal-angle dependence indicating the presence
of neutrino oscillations. The data analysis favours νµ → ντ

oscillations, with parameters in the ranges

δm2
νµντ

∼ (10−2 to 10−3) eV2 (1)

sin2 2θµτ ≥ 0.8 . (2)

Dominance by νµ → νe oscillations is disfavoured by the
Super-Kamiokande data on electron-like events [1], as well
as by the data from the Chooz reactor experiment [2]. Os-
cillations involving a sterile neutrino are disfavoured, but
not yet excluded, by a detailed study of the azimuthal-
angle dependence of muon-like events [1] and by mea-
surements of π0 production. Moreover, in most theoretical
models sterile neutrinos tend to be heavy. Therefore, we
consider νµ → ντ as the ‘established’ hypothesis for the
atmospheric neutrino data.

In addition, the long-standing deficit of solar νe mea-
sured on Earth may also be explained via neutrino os-
cillations, either in vacuo or enhanced in matter by the
Mikheyev-Smirnov-Wolfenstein (MSW) mechanism [3].
The first option would require δm2

νeνα
∼ (0.5 − 1.1) ×

10−10 eV2, where α is µ or τ . MSW oscillations [3], on
the other hand, require δm2

νeνα
∼ (0.3 − 20) × 10−5 eV2

with either large sin2 2θeα ∼ 1 or small sin2 2θeα ∼ 10−2.
The presence of either νe → νµ or νe → ντ oscillations at
a high level is, therefore, an open question.

Both the solar and atmospheric neutrino data can be
accommodated in a natural way in schemes with three
light neutrinos with at least one large mixing angle and hi-
erarchical masses, of the order of the required mass differ-
ences: m3 ∼ (10−1 to 10−1.5) eV and m2 ∼ (10−2 to 10−3)
eV � m3. On the other hand, if neutrinos were also to pro-
vide significant hot dark matter, three almost-degenerate
neutrinos with masses of ≈ 1 eV would be needed.

Neutrino oscillations involve violations of the individ-
ual lepton numbers Le,µ,τ , raising the prospect that there
might also exist observable processes that violate charged-
lepton number conservation [4,5], such as µ → eγ, 3e and
τ → µγ, 3µ/e, and µ → e conversion on heavy nuclei [5–
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10]. We recall briefly the present experimental upper limits
on the most interesting of these decays for our subsequent
discussion:

BR(µ → eγ) < 1.2 × 10−11 : [11] (3)
BR(µ+ → e+e+e−) < 1.0 × 10−12 : [12] (4)

R(µ−Ti → e−Ti) < 6.1 × 10−13 : [13] (5)
BR(τ → µγ) < 1.1 × 10−6 : [14] . (6)

Projects are currently underway to improve several of these
upper limits significantly:

BR(µ → eγ) → 10−14 : [15] (7)
R(µ−Ti → e−Ti) → few × 10−14 : [16] (8)

R(µ−Al → e−Al) → 1 × 10−16 : [17] (9)
BR(τ → µγ) → 1 × 10−9 ? : [18] (10)

and there are active discussions of intense µ sources that
might enable the upper limits on µ → e transitions to be
improved by several further orders of magnitude [19].

We evaluate the possibility of charged-lepton-flavour
violation using the most natural mechanism for obtaining
neutrino masses in the sub-eV range, namely the see-saw
mechanism [20], which involves Dirac neutrino masses mD

ν

of the same order as the charged-lepton and quark masses,
and heavy Majorana masses MνR

, leading to light effective
neutrino mass matrices:

meff = mD
ν · (MνR

)−1 · mDT

ν . (11)

Neutrino-flavour mixing may then occur through either
the Dirac and/or the Majorana mass matrices, which may
also feed flavour violation through to the charged leptons.

The specific mechanism explored in this paper is renor-
malization of the sneutrino and slepton masses in a su-
persymmetric theory via the neutrino Dirac couplings λD

ν

[5]. It is well known that the prototypical charged-lepton
flavour-violating process µ → eγ provides one of the most
stringent upper limits on flavour violation in the Min-
imal Supersymmetric extension of the Standard Model
(MSSM). If the soft supersymmetry-breaking sneutrino
and slepton masses were non-universal before renormal-
ization, it would be very difficult to understand why this
decay was not seen long ago. Universal scalar masses arise
naturally in no-scale supergravity models [21], the frame-
work favoured here, as well as in gauge-mediated models
[22]. In the universal supergravity case, the soft
supersymmetry-breaking sneutrino and slepton masses are
subject to calculable and non-trivial renormalization via
Dirac neutrino couplings at scales between
MGUT ∼ 1016 GeV and MνR

∼ 1013 GeV.
The predictions of this class of universal supergrav-

ity models are quite characteristic. In non-supersymmetric
models with massive neutrinos, the amplitudes for the
charged-lepton-flavour violation are proportional to in-
verse powers of the right-handed neutrino mass scale MνR

[4]. Since the latter is much higher than the electroweak
scale, the rates for rare decays such as µ → eγ are ex-
tremely suppressed [4]. On the other hand, in supersym-
metric models these processes are only suppressed by in-
verse powers of the supersymmetry breaking scale, which

is at most 1 TeV [5]. Among such models, those with non-
universal input scalar masses at the GUT scale generally
predict excessive rates for rare charged-lepton-flavour vi-
olation, whereas they are very suppressed in no-scale [21]
and gauge-mediated models [22]. The class of supergrav-
ity models with universal scalar masses that we consider
here toe the fine line between excessive and unobservable
charged-lepton-flavour violation, as we discuss in more de-
tail below.

Here we re-analyze the prospects for charged-lepton-
flavour violation in this theoretical framework, using as
a guide the indications from Super-Kamiokande and else-
where on neutrino masses and mixing. Within the gen-
eral see-saw scenario, solutions with various differences in
the neutrino mass-matrix structure have been proposed,
including models with maximal [23,24], close-to-maximal
[25,26] and bi-maximal [27] neutrino mixing. In the fol-
lowing, we categorize models according to whether the off-
diagonal elements in their Dirac and Majorana couplings
‘match’ in such a way that their mixing is almost two-
generational (and hence predominantly in the µ − τ sec-
tor), and more general models in which they ‘mismatch’,
and the mixing is essentially three-generational (and sub-
stantial also in the µ − e and τ − e sectors). We provide
examples of the ‘matched’ and ‘mismatched’ categories in
schemes with Abelian [28,25,26] flavour symmetries, and
comment on the possibilities with non-Abelian [29] flavour
symmetries, as well as in a string-derived flipped SU(5)
model [30], whose characteristic property is the appear-
ance of large off-diagonal µ − e couplings in the Dirac
neutrino-mass matrix [24]. As we exemplify with calcula-
tions in the Abelian models, the rates for the radiative
decays µ → eγ and τ → µγ may offer good prospects
for testing different textures. These decays may well take
place at observable rates, and different neutrino-mass mod-
els correlate their decay rates in characteristically differ-
ent ways, enabling µ → eγ and τ → µγ to serve as useful
diagnostic tools for neutrino-mass models. Finally, we cal-
culate in some models the rate for µ → e conversion on
Titanium, which may also be accessible to future experi-
ments, and comment briefly on µ → 3e decay.

2 General aspects of Charged-Lepton-Flavour
Violation in supersymmetric models
with universal breaking

We first display in Fig. 1 the one-loop diagrams that give
rise to µ → eγ, noting that the τ → µγ-decay is gener-
ated by an analogous set of graphs. We later extend the
discussion to include µ → 3e decay, τ → 3µ/e and µ → e
conversion. The matrix element of the electromagnetic-
current operator between two distinct lepton states li and
lj is given in general by

Tλ = 〈li|(p − q)|Jλ|lj(p)〉
= ūi(p − q){mjiσλβqβ

(
AL

MPL + AR
MPR

)
+

(q2γλ − qλγ · q)
(
AL

EPL + AR
EPR

)}uj(p) (12)
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Fig. 1a,b. Generic Feynman diagrams for µ → eγ decay: l̃
represents a charged slepton a or sneutrino b, and χ̃(n) and
χ̃(c) represent neutralinos and charginos respectively

where q is the photon momentum. The coefficients AM

and AE receive contributions from both neutralino
(n)/charged-slepton (Fig. 1a) and chargino (c)/sneutrino
(Fig. 1b) exchanges:

AL,R
M = AL,R

M(n) + AL,R
M(c), AL,R

E = AL,R
E(n) + AL,R

E(c) . (13)

The amplitude of the process is then proportional to Tλελ,
where ελ is the photon-polarization vector.

We recall that the easiest way to determine the loop
momentum-integral contributions to the coefficients AM,E

is to identify, in the corresponding diagram, terms propor-
tional to (p · ε) and (q · ε). The coefficient of the former
is proportional to the momentum-integral contribution to
the σλβ term in (12), while the coefficient of the latter
is proportional to the difference between the momentum-
integral contributions to the σλβ and (q2γλ−qλγ ·q) terms.
Defining x ≡ M2/m2, where M is the chargino (neu-
tralino) mass and m the sneutrino (charged slepton) mass,
the following functions appear in the AM terms [10,5]:

AM(n) : 1
6(1−x)4 (1 − 6x + 3x2 + 2x3 − 6x2 log x) and

1
(1−x)3 (1 − x2 + 2x log x) M

mlj

AM(c) : 1
6(1−x)4 (2 + 3x − 6x2 + x3 + 6x log x) and

1
(1−x)3 (−3 + 4x − x2 − 2 log x) M

mlj

(14)
where mlj is the mass of the lj lepton, while for the AE

terms we have:

AE(n) : 1
(1−x)4 (2 − 9x + 18x2 − 18x3 + 6x3 log x)

AE(c) : 1
(1−x)4 (16 − 45x + 36x2 − 7x3 + 6(2 − 3x) log x).

(15)
Note in this case the lack of terms proportional to the
gaugino mass M . The branching ratio (BR) of the decay
lj → li + γ is then given by:

BR(lj → liγ) =
48π3α

G2
F

(
(AL

M )2 + (AR
M )2

)
. (16)

We see, therefore, that the branching ratios for radiative
lepton decays involve the masses of several supersymmet-
ric particles at low energies.

As stated in the Introduction, in this work we assume
universal scalar masses and trilinear terms A at the GUT

scale. However, the physical values of these masses to
be used in (14,15,16) have to be obtained by integrating
the renormalization-group equations of the MSSM supple-
mented with right-handed neutrinos, found, for example,
in [31]. The Dirac neutrino and charged lepton Yukawa
couplings cannot, in general, be diagonalized simultane-
ously. Since both these sets of lepton Yukawa couplings
appear in the renormalisation-group equations, the lepton
Yukawa matrices and the slepton mass matrices can not be
simultaneously diagonalized at low energies either. Indeed,
in the basis where m` is diagonal, the slepton-mass matrix
acquires non-diagonal contributions from renormalization
at scales below MGUT , of the form [5]:

δm̃2
` ∝ 1

16π2 (3 + a2) ln
MGUT

MN
λ†

DλDm2
3/2, (17)

where λD is the Dirac neutrino Yukawa coupling, MN is
the intermediate scale where the effective neutrino-mass
operator is formed, and a is related to the trilinear mass
parameter: Al = am3/2, where m2

3/2 is the common value
of the scalar masses at the GUT scale. As a result, the
diagrams of Fig. 1 lead to radiative decays of charged lep-
tons 1.

We obtain the physical charged-slepton masses by nu-
merical diagonalization of the following 6 × 6 matrix:

m̃2
` =

(
m2

LL m2
LR

m2
RL m2

RR

)
(18)

where all tha entries are 3 × 3 matrices in flavour space.
Using the superfield basis where λ` is diagonal, it is con-
venient for later use to write the 3 × 3 entries of (18) in
the form:

m2
LL = (mδ

˜̀)
2 + δm2

νD
+ m2

`

−M2
Z(

1
2

− sin2θW )cos2β (19)

m2
RR = (mδ

ẽR
)2 + m2

` − M2
Zsin2θW cos2β (20)

m2
RL = (Aδ

e + δAe − µtanβ)m` (21)

m2
LR = m2†

RL (22)

where tanβ is the standard ratio of the two MSSM Higgs
vevs, (mδ

˜̀)
2, (mδ

ẽR
)2 and Aδ

e denote the diagonal contribu-
tions to the corresponding matrices, obtained by numer-
ical integration of the renormalization-group equations,
and δm2

νD
and δAl denote the off-diagonal terms that ap-

pear because λD and λ` may not be diagonalized simul-
taneously (17).

The full mass matrix for left- and right-handed sneu-
trinos has a 12×12 structure, given in terms of 3×3 Dirac,
Majorana and sneutrino mass matrices. The effective 3×3
mass-squared matrix for the left-handed sneutrinos has

1 We note that a complete renormalization-group analysis
would also involve the quark and squark sector, and require a
treatment of supersymmetric thresholds. However, the inclu-
sion of such detailed effects would not affect the main conclu-
sions of our analysis, so we may neglect them for our purposes.
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the same form as the m2
LL part (22) of the 6 × 6 charged-

slepton matrix (18), with the difference that now the Dirac
masses are absent. One might have expected that - as in
the case of charged sleptons - the Dirac terms would in-
duce considerable mixing effects. However, we show here
that this is not the case in the sneutrino-mass matrix. Due
to the vastly different scales involved in the full 12 × 12
sneutrino mass matrix, a complete analysis is not straight-
forward. Instead, we construct an effective 6×6 matrix for
the light sector, by applying matrix perturbation theory,
in analogy with to the see-saw mechanism [20]. To second
order, the result is:

(m2
ν̃)eff =



m2
˜̀ + O(m4

˜̀M
−2) ((2Aν + AN ) − 2µ cot β)·

(mDM−1m†
D)

((2Aν + AN ) − 2µ cot β)· m2
˜̀ + O(m4

˜̀M
−2)

(mDM−1m†
D)∗




(23)

The first- and second-order terms in (23) are obtained
assuming that all the parameters as real and the matri-
ces Aν,N are proportional to the identity. Notice that the
second-order terms along the diagonal can be neglected,
whereas the first-order off-diagonal terms must be
retained, since they lead to complete mixing of the pair-
wise degenerate states. However, this does not affect the
branching ratios for the flavour-violating radiative decays.
Therefore, we simply use [8]

m̃2
ν = (mδ

l̃
)2 + δm2

νD
+

1
2
M2

Zcos2β (24)

in our subsequent calculations.
Next we consider the rare decay µ → 3e and µ → e

conversion on nuclei, starting with the µ → 3e reaction.
This reaction is interesting on its own since it has a struc-
ture much richer than that of the µ → eγ decay. Thus,
it is possible that µ → 3e can take place in cases where
µ → eγ is forbidden. This and the related τ → 3µ/e decay
receive contributions from three types of Feynman dia-
grams. The first are photon ‘penguin’ diagrams related to
the diagrams for µ → eγ and τ → µ/eγ discussed above,
where now the photon is virtual and decays into an e+e−
(or µ+µ−) pair. A second class of diagrams is obtained by
replacing the photon line with a Z boson. Finally, there
are also box diagrams. In addition, all the above types of
diagrams are accompanied by their supersymmetric ana-
logues. We evaluate all the relevant diagrams exactly in
our subsequent numerical analysis. However, we note that
the dominant diagrams in the models of interest to us here
are generally the ‘penguin’ diagrams with an intermedi-
ate off-shell photon, which contribute via the AM and AE

terms presented in (14,15). Compared to µ → eγ decay,
the branching ratio is,

Γ (µ+ → e+e+e−)
Γ (µ+ → e+γ)

≈ 6 × 10−3 . (25)

This does not necessarily mean that µ → 3e decay is unin-
teresting to experiment, because the experimental detec-
tion and background problems are very different for the
two decays. However, we do not present detailed numerical
results for µ+ → e+e+e− decay, because the factor (25)
is essentially universal. There is a similar small ratio for
τ → 3µ/e relative to τ → µ/eγ, which seems to preclude
its observation even at the LHC.

The µ → e conversion is a coherent process in a muonic
atom originally studied in [32,33]. Even though this reac-
tion proceeds via the same classes of diagrams as those
discussed above in connection with µ+ → e+e+e−, this
reaction is rather different, since it involves hadronic cur-
rents. Effects of nuclear nature, such as the size of the
nucleus in particular when heavy atoms are involved, play
important role. Detailed calculations including all contri-
butions from penguin and the box diagrams will be given
in Sect. 5. Here, in order to obtain a first rough estimate of
the ratio of the µ → e conversion to the µ → eγ reaction,
we restrict to the photonic contribution which dominates
over a large portion of the parameter space. The µ → e
conversion rate relative to conventional muon capture, is
given by

R(µ → e) ≡ Γ (µ → e)
Γ (µ → νµ)

=
(

4πα

GF

)2
Eepe

m2
µ

|ME|2
CZf(A, Z)

×(|AL + AR|2 + |AL − AR|2) (26)

where AL/R ≡ A
L/R
M + A

L/R
E . It is important to note that

the combination of matrix elements A
L/R
M/E in (26) is differ-

ent from that in appearing µ → e decay (16). The function
f(A, Z) is given in [34], and has the following approximate
value for elements with A ≈ 2Z

f(A, Z) = 1.0 − 0.03
A

2Z
+ 0.25

(
A

2Z
− 1
)

+3.24
(

Z

2A
− 1

2
− 1

4A
| A

2Z
− 1|

)
≈ 0.16 . (27)

Further, the parameter C in (26) is [34]

C = |F 2
V + 3F 2

A + F 2
P − 2FAFP | ∼ 5.9 (28)

and the nuclear matrix element |ME| is

|ME| = | < (A, Z)f |J(0)|(A, Z)i > | ≈ ZFc(q2), (29)

where, in the case of the photonic diagram, Fc(q2) stands
for the proton or neutron form factor. Calculations using
the nuclear shell model for 48

22Ti have yielded Fc(q2 =
−m2

µ) ≈ 0.543 for the case of proton and 0.528 for the
neutron [35,36]. Comparing now with B(µ+ → e+γ), one
obtains a rough estimate of the expected range of the µ →
e conversion ratio:

R(µTi → eT i) ≈ α

3π

Eepe

m2
µ

ZF 2
c

Cf(A, Z)
BR(µ → eγ)

≈ 5.6 × 10−3BR(µ → eγ) (30)
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which shows a relative suppression about two orders of
magnitude. Nevertheless, µ → e conversion is also in-
teresting. Current experimental bounds give R(µTi →
eT i) ≤ 6.1× 10−13, whilst ongoing experiments will reach
∼ 2×10−14. However, with an intense proton (and muon)
source, such as that projected for a neutrino factory or
a muon collider, experiments sensitive to rates as low as
10−16 may be feasible [19]. Moreover, as is apparent from
(26) above, and the appearance of box diagrams, the struc-
ture of the matrix element is different from that for µ → eγ
(16), so the ratio (30) is not universal, unlike the µ → 3e
case. Therefore, although we emphasize µ → eγ in what
follows, we shall also present later some results for µ → e
conversion on Titanium.

3 Neutrino mass textures
in the light of Super-Kamiokande

Having discussed the theoretical framework for calculat-
ing charged-lepton-flavour violation in a supersymmetric
model with universal input soft supersymmetry-breaking
parameters at the GUT scale, we now discuss possible ex-
treme patterns of neutrino masses, mixings and Yukawa
couplings that might figure in the renormalization-group
equations.

The most basic piece of information from the recent
atmospheric-neutrino data is the existence of at least one
large mixing angle in the lepton sector, that associated
with the µ− τ flavour mixing. Lepton mixing may in gen-
eral arise either from the charged-lepton sector, or the
neutrino sector, or both. In analogy to the quark mixing
matrix VCKM , the leptonic mixing matrix VMNS is de-
fined as [37]

VMNS = V`V
†
ν (31)

where V` transforms the left-handed charged leptons to a
diagonal mass basis, whereas Vν diagonalizes the light-
neutrino mass matrix meff . In the see-saw framework
which provides a natural mechanism for generating very
light neutrinos [20], the latter is given by

meff = mD
ν · (MνR

)−1 · mDT

ν (32)

where mD
ν and MνR

stand for the Dirac and the heavy
Majorana neutrino mass matrices respectively.

How may one characterize the structures of Dirac and
heavy Majorana matrices that generate viable neutrino
textures consistent with the Super-Kamiokande data? In
[24], we proposed a classification according to the criteria
of ‘matched’ and ‘mismatched mixing’, as defined below.

• Matched mixing: This occurs when there is only one
large neutrino mixing angle, namely that in the (2–3) sec-
tor of the light neutrino mass matrix meff , as suggested
by the atmospheric neutrino data, and there is no large
mixing in other sectors of either the light Majorana or
the Dirac neutrino mass matrix. In this case, the prob-
lem reduces approximately to a 2 × 2 mixing problem.
Since there is no way to render three degenerate neutrinos

consistent with the bounds from neutrinoless double beta
decay without also large (1-2) neutrino mixing, ‘matched
mixing’ requires hierarchical neutrino masses.

In this case, it has been shown that (in the absence
of zero-determinant solutions, i.e., solutions where strong
cancellations in the (2,3) sub-determinant in the neutrino
sector cause one of the eigenvalues to be relatively small,
which we will discuss in an example below) the lepton mix-
ing originates entirely from the Dirac mass matrices, while
the structure of the heavy Majorana mass matrix MνR

does not affect the low-energy lepton mixing [26]. This re-
sult remains valid even when renormalisation group effects
are taken into account [38]. Then, in the basis where the
charged lepton flavours are diagonal, the Dirac neutrino
mass matrix takes a very simple form, given by

mD
ν ∝


0 0 0

0 x2 x

0 x 1


 , mD

ν ∝


0 0 0

0 xy x

0 y 1


 (33)

for symmetric and asymmetric textures, respectively 2.
It is evident that, in such a scenario, the (1-2) mixing

and (1-3) mixing are both zero, in first approximation, so
the large (2-3) mixing is not communicated at all to the
(1-2) sector, for which even the sub-dominant contribu-
tions are very small. Passing to the (2-3) mixing, we see
that it can be either maximal or non-maximal, depending
on the value of x, which can be as large as unity. It is clear
that such a ‘matched-mixing’ scenario is consistent only
with the small-mixing-angle (SMA) MSW solution for so-
lar neutrinos, since the large-mixing-angle (LMA) MSW
solution and the vacuum-oscillation (VO) scenarios both
require large (1–2) and/or (1–3) mixing.

If (1–2) and (1–3) mixing are both small, as in a generic
‘matched-mixing’ model, the µ → eγ and τ → eγ rates
should be relatively ‘small’, whereas the τ → µγ rate may
be relatively ‘large’. These general expectations are borne
out in the model calculations presented later.

• Mismatched mixing: Entirely different structures
arise when (i) there is more than one large mixing angle
in meff , and/or (ii) there is a large Dirac mixing angle
that involves different generations from those of the light
Majorana matrix. A mild example of mismatched mix-
ing occurs, for example, when the atmospheric problem is
solved by νµ → ντ oscillations, whilst the Dirac mass ma-
trix is related to the quark mass matrix, with Cabibbo-size
mixing between the first and second generations.

In generic mismatched mixing models, there are rela-
tively large violations of charged-lepton flavour in all the
(1–2), (2–3) and (3–1) channels. Thus, such a ‘mismatched-
mixing’ scenario is a priori compatible with either the
LMA or VO solutions of the solar-neutrino problem. More-
over, µ → eγ and τ → eγ generically have larger rates
than they would have in matched-mixing models. How-
ever, the structure of the Majorana matrix becomes more

2 Here we have correlated the (2-2) with the (2-3) and (3-2)
elements, assuming that they arise from a flavour symmetry of
the type discussed later.
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complicated in the case of mismatched mixing. In particu-
lar, it is possible that the Dirac mass matrix is almost di-
agonal, with a large hierarchy of Dirac couplings, so that,
in particular, λ1 � λ2 where the λi are the eigenvalues of
the neutrino Dirac coupling matrix. In this case, the light
entry of the heavy Majorana mass matrix again effectively
decouples from the heavier ones [24]. However, this is no
longer true if the (1–2) mixing angle in the Dirac mass
matrix increases.

One particularly interesting example of such large mix-
ing, which has been extensively studied in the literature,
is that of bi-maximal mixing [27], for which one can easily
obtain viable solutions with degenerate neutrinos. As an
example, we quote the texture

meff ∝




0 1√
2

1√
2

1√
2

1
2 − 1

2
1√
2

− 1
2

1
2


 . (34)

For this texture, in the neutrino mixing parametrization(
νe

νµ

ντ

)
=

(
c2c3 c2s3 s2e

−iδ

−c1s3 − s1s2c3e
iδ +c1c3 − s1s2s3e

iδ s1c2
+s1s3 − c1s2c3e

iδ −s1c3 − c1s2s3e
iδ c1c2

)

×
(

ν1
ν2
ν3

)
, (35)

where the diagonal matrix mdiag
eff is diag(m1e

iφ, m2e
iφ′

,

m3), and φ and φ′ are phases in the light Majorana mass
matrix, one finds that the mixing angles can be

φ1 =
π

4
, φ2 = 0, φ3 =

π

4
. (36)

However, this mixing is not stable under perturbations of
the degenerate texture (34) [39]. After including renor-
malisation group effects, the associated mixing angles be-
come 3

φ1 ≈ −0.327, φ2 ≈ 0.415, φ3 ≈ −0.884 (37)

which is inconsistent with a degenerate mass scale much
above 1 eV. However, ways around this difficulty have
been proposed in the context of non-Abelian flavour sym-
metries, as discussed later.

4 Neutrino masses from flavour symmetries

4.1 Examples based on Abelian groups

In this section we give a brief description of models based
on extra Abelian symmetries which lead to a consistent

3 Renormalisation-group effects on schemes with neutrino
degeneracy have also been discussed in [40].

Table 1. Notation for the U(1) charges of the Standard Model
fields, where i stands for a generation index

Qi uc
i dc

i Li ec
i νc

i

U(1) αi βi γi bi ci di

charged fermion mass spectrum and give predictions for
the neutrinos and flavour violating processes. The fact
that the fermion mass matrices exhibit a hierarchical
structure suggests that they are generated by an underly-
ing family symmetry, of which the simplest examples are
based on Abelian groups. To review how the various terms
in the mass matrices arise in such a model, we first denote
the charges of the Standard Model fields under the symme-
try as in Table 1. The Higgs charges are chosen so that the
terms f3f

c
3H (where f denotes a fermion and H denotes

H1 or H2) have zero charge. Thus, when the U(1) symme-
try is unbroken only the (3,3) elements of the associated
mass matrices will be non-zero. When the U(1) symmetry
is spontaneously broken via standard model singlet fields,
θ, θ̄, with opposite U(1) charge and equal vevs (vacuum
expectation values), the remaining entries are generated in
a hierarchical manner. The suppression factor for each en-
try depends on the family charge: the higher the net U(1)
charge of a term fif

c
j H, the higher the power n in a non-

renormalizable term fif
c
j H

(
θ
M

)n
that has zero charge.

Here M is a mass scale associated with the mechanism
that generates the non-renormalizable terms. A common
approach communicates symmetry breaking via an exten-
sion of the ‘see-saw’ mechanism, mixing light and heavy
states, known as the Froggatt–Nielsen mechanism [41].

We discuss the simplest possible scheme, with symmet-
ric mass matrices [42] 4. This leads to three viable cases
with charges [26]

A) : bi = ci = di =
(

−7
2
,
1
2
, 0
)

B) : bi = ci = di =
(

5
2
,
1
2
, 0
)

C) : bi = ci = di = (3, 0, 0) (38)

leading to three possible charged-lepton matrices :

M` ∝


 ε̄7 ε̄3 ε̄7/2

ε̄3 ε̄ ε̄1/2

ε̄7/2 ε̄1/2 1


 , M` ∝


 ε̄5 ε̄3 ε̄5/2

ε̄3 ε̄ ε̄1/2

ε̄5/2 ε̄1/2 1




M` ∝


 ε̄6 ε̄3 ε̄3

ε̄3 1 1
ε̄3 1 1


 . (39)

The first two matrices lead to natural lepton hierarchies
for ε̄ ≈ 0.2 and imply large but non-maximal lepton mix-
ing. On the other hand, the third matrix leads to maximal

4 The lepton sector in this case is identical to that of
SU(3)c×SU(3)L×SU(3)R [26], which, however, predicts asym-
metric quark mass matrices.
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mixing in the (2-3) sector, but requires an accurate can-
cellation in order to get the correct ratio mµ/mτ .

The neutrino Dirac mass is specified to have the same
form as the charged leptons, but with a different expansion
parameter. Indeed, since neutrinos and up-type quarks
(charged leptons and down-type quarks) couple to the
same Higgs, they should have the same expansion parame-
ter ε(ε̄), where the spread between the up- and down-quark
hierarchies requires ε ≈ ε̄2 ≈ 0.05 [42]. Then,

mD
ν ∝


 ε7 ε3 ε7/2

ε3 ε ε1/2

ε7/2 ε1/2 1


 , mD

ν ∝


 ε5 ε3 ε5/2

ε3 ε ε1/2

ε5/2 ε1/2 1


(40)

for the first two choices of charges in (38) respectively.
The mass structure of the light neutrinos is more com-

plicated, due to the heavy Majorana masses of the right-
handed components. However, as discussed above, the
neutrino mixing in the case of large neutrino hierarchies
and non-zero determinant solutions is determined entirely
by the Dirac mass matrices (which feel the left-handed
charges). The heavy Majorana mass sector only affects
the neutrino eigenvalues. For instance, for the set B of so-
lutions, with bi = ci = di =

( 5
2 , 1

2 , 0
)
, we find that [26,

43]

V` =


 1 ε̄2 −ε̄5/2

−ε̄2 1 ε̄1/2

ε̄5/2 −ε̄1/2 1


 , VνD

=


 1 ε̄4 −ε̄5

−ε̄4 1 ε̄

ε̄5 −ε̄ 1


(41)

whilst for the set A of solutions with bi = ci = di =(− 7
2 , 1

2 , 0
)

we find that

V` =


 1 ε̄2 −ε̄7/2

−ε̄2 1 ε̄1/2

ε̄7/2 −ε̄1/2 1


 , VνD

=


 1 ε̄4 −ε̄7

−ε̄4 1 ε̄

ε̄7 −ε̄ 1


(42)

We see that both of these solutions are close to the limit of
‘matched’ mixing discussed in the previous section, since
the mixing in the (1-2) and (1-3) sectors is much smaller
than in the (2-3) sector, even though the latter may be
less than maximal.

The solution C is also close to the limit of ‘matched’
mixing, but with maximal (2-3) mixing. The lepton mixing
matrix in this case is

V` ≈




1√
2

− 1√
2

ε̄3

− 1
2 − 1

2 − 1√
2

1
2

1
2 − 1√

2


 (43)

and VνD
has a similar form, with the small entry ε̄3 → ε̄6,

in analogy with (41, 42). The diagonalization of the lepton
mass matrix leads in this case to eigenvalues ε̄3,−ε̄3, 2,
and some fine-tuning would be needed to obtain correct
low-energy masses. In this case, V` might differ from (43).

4.2 Examples based on non-Abelian groups

We do not discuss these type of models in detail, but
remark that they lead naturally to models with degen-

erate neutrinos. Indeed, when the three lepton doublets
form a real irreducible representation of some non-Abelian
flavour group, as for instance a triplet of SO(3), which has
been extensively studied during the last year [29], one ex-
pects exact neutrino mass degeneracy at zeroth order. The
same result can be achieved by discrete non-Abelian sym-
metries [44] and is to be contrasted to the predictions of
abelian flavour symmetries, which naturally lead to large
hierarchies between the various mass entries, as reviewed
above. However, the non-Abelian symmetry is typically
broken by terms related to lepton masses. Once the flavour
symmetry is broken, the exact neutrino mass degeneracy
is lifted by small terms and one may be able to reproduce
the Super-Kamiokande data.

Generic neutrino mass textures that originate from
such flavour symmetries are of the ‘mismatched-mixing’
type, as in the example (34) mentioned above. It was
pointed out [39] that such textures are vulnerable to radia-
tive corrections, which may lead to unacceptable patterns
of masses and mixing angles. The requirement that such
a disaster be avoided imposes severe constraints on the
mixing angles and requires the mixing should be close to
bi-maximal [45]. Thus, one would expect a large mixing
angle in the µ−e flavour sector, which would tend to gen-
erate relatively large large rates for µ → eγ, µ → 3e and
µ → e conversion, as well as for τ → µγ decay.

4.3 Flipped-SU(5) model derived from string

We now outline how the above analysis may be extended
to a typical grand-unified model derived from string. In
such a framework, the following features appear generic:
(i) non-Abelian symmetries are disfavoured, (ii) the U(1)
symmetries and charges are specified in any given string
model, and one generically expects a product of anoma-
lous and non-anomalous Abelian groups, rather than a
single U(1), (iii) there are many singlet fields involved in
the mass generation, not just a single pair θ, θ̄. Once a
string model is chosen, e.g., by specifying fermionic bound-
ary conditions on the world sheet, then automatically the
gauge properties of the model and the quantum numbers
of all fields, including those which may acquire non-zero
vevs and fill in the fermion mass matrices, are specified.
The field vevs that determine the magnitudes of the var-
ious entries are constrained by the anomaly-cancellation
conditions and the flat directions of the effective poten-
tial in the theory. Finally, we recall that (iv) additional
string symmetries (expressed through calculational selec-
tion rules [46]) further constrain the possible forms of the
mass matrices, since they forbid most of the Yukawa cou-
plings that are allowed by the rest of the symmetries of
the model.

An example of the above class of models is provided by
the flipped SU(5) model derived from string [30], special-
izing to the pattern of vevs and mass matrices discussed
in [47,24]. Looking at the field assignments in group rep-
resentations, one sees that: (i) since the charge conjugates
of the right-handed neutrinos have the same charges as
the down quarks, the Majorana mass matrix will be con-
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strained, and (ii) due again to the common charge assign-
ments, the Dirac neutrino mass matrix is the transpose of
the up-quark mass matrix. The quark and charged-lepton
mass matrices have been presented in [47], where the pos-
sible flat directions of the theory were also reconsidered.
Since the analysis of the surviving couplings after all sym-
metries and string selection rules are taken into account
is quite involved, we refer to the original references for
details, while here we just give an illustration of the pre-
dictions for neutrino masses.

Within this model, we found that the charged-lepton
mixing matrix is given by

V` =


 1 − 1

2x2 x 0
−x 1 − 1

2x2 0
0 0 1


 (44)

where x is the vev of a combination of hidden-sector fields
that transform as sextets under SO(6), that needs to be
O(1) for realistic quark mass matrices [47]. The Dirac neu-
trino mass matrix, mD

ν , is expressed in terms of three ex-
pansion parameters f, x, y related to field vevs scaled by
the string mass:

mD
ν =


xf 1 0

f x 0
0 0 y


 (45)

where y stands for the SU(5) decuplets that break the
gauge group down to the Standard Model, with scaled
vev ≈ MGUT /Ms, where Ms is the string scale. In weakly-
coupled string constructions, this ratio is suppressed, but
the GUT and the string scales can coincide in the strong-
coupling limit of M theory, in which case y ≈ 1. Finally, f
stands for a singlet field, the value of whose vev ≈ 0.04 is
fixed in order of magnitude by the quark mass hierarchies.

Since now the mixing in the (2-3) sector of the Dirac
mass matrix is zero, we see that in order to generate a
large hierarchy among the various neutrinos, we necessar-
ily require zero-determinant solutions. In [24], where the
expectations for neutrino masses were studied, we ended
up with two possible forms for MνR

, depending on the
vevs of the singlet fields. These were

MνR
∝


α 0 0

0 0 fy

0 fy tx


 , MνR

∝


 fy2 λxy2 0

λxy2 0 fy

0 fy tx


 (46)

where in the second example a notional factor of λ ≈ O(1)
has been included so as to avoid sub-determinant cancel-
lations, which are not expected to arise once coefficients
of order unity are properly taken into account.

As can be seen from the lower 2 × 2 matrices in (46),
consistency with the neutrino data implies y ≈ 1, as could
occur in the strong-coupling limit of M theory, and t ∼ f .
The parameter α represents a higher-order non-
renormalizable contribution

(
〈Φ〉
Ms

)n

, where Φ is an effec-
tive singlet, that is expected to appear at some power

n > 7. Its actual value is irrelevant, provided that it not
too tiny, in which case mν1 might be increased to an un-
acceptable value.

The situation described just above corresponds to the
‘mismatched’ scenario introduced above and exemplified
previously in the context of simpler U(1) models. It is
straightforward now to determine the effective light neu-
trino mass matrix for the above cases, and see that large
mixing is implied for the νµ − ντ sector, as required by
the atmospheric neutrino data. We do not go into further
details, since they would depend on more specific aspects
of the model, which contains several poorly-constrained
expansion parameters, not all of which are necessarily
very small. However, we can infer some qualitative prop-
erties of the predictions of this flipped SU(5) model for
flavour-violating decays. From the form of the charged-
lepton mass matrix (44), we would expect a rather large
µ → eγ branching ratio. On the other hand, the τ lepton
remains completely decoupled from the lighter families in
the approximation considered here 5. This is in contrast
with many of the U(1) models, with the result this flipped
SU(5) model would predict a relatively small branching
ratio for τ → µγ.

5 Predictions for rare processes

We now discuss quantitatively implications of the large
neutrino mixing needed to interpret the neutrino data for
processes that violate the conservation of charged lepton
flavours. In particular, as we shall see, the likelihood that
the atmospheric neutrino problem is solved by νµ − ντ

mixing suggests the likely appearance of the τ → µγ tran-
sition at a rate that may be accessible [18]. This obser-
vation supplements the common belief that µ → eγ and
related processes may offer good prospects for observing
charged-lepton-flavour violation.

In this section we present results for these and related
flavour-changing decays for generic examples of the U(1)
textures discussed in the previous sections. We start with
the radiative decays µ → eγ and τ → µγ [5]. For the
reasons discussed earlier, we do not explore further the
corresponding decays where the photon is replaced by an
e+e− pair. However, we do present later some numerical
results for µ−e conversion on Ti, whose rate is not directly
related to that for µ → eγ, and which may present some
experimental advantages [10].

In addition to the flavour-mixing effects, the rates for
flavour non–conserving decays are also sensitive to other
physical quantities. In particular, in the supersymmetric
GUT context explored here, they depend on the masses
of the sparticles that mediate the flavour non-conserving
processes. We parametrize their masses in terms of the
universal GUT-scale parameters m0 and m1/2, and use the
renormalization-group equations of the MSSM to calculate

5 This is, of course, connected to the fact that the large νµ −
ντ mixing needed to interpret the atmospheric neutrino data
comes entirely from the effective light Majorana matrix.
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Fig. 2. Predictions for BR(µ → eγ) and BR(τ → µγ) for texture A of Sect. 4, assuming the values m1/2 = 250 GeV, tan β = 3
and A0 = −m1/2. The solid lines correspond to positive µ, and the dashed ones to µ < 0. The results are for the three specific
choice of the undetermined numerical coefficients cij shown in the text. We see that, for fixed m0, the µ → eγ curves are more
sensitive to the cij than are those for τ → µγ
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Fig. 3. As in Fig. 1, but for texture B of Sect. 4

the low-energy sparticle masses, taking into account low-
energy threshold effects. Other relevant free parameters
of the MSSM (discussed in detail in [8]) are the trilinear
coupling A, the sign of the Higgs mixing parameter µ, and
the value of tanβ. Here we fix the value of A0 = −m1/2,
assume the sign of the µ parameter to be either positive or
negative, and restrict our analysis to low and intermediate
values of tanβ ≤ 10. Before presenting our results, we
first consider in more detail the relevance of some of the
parameters entering in the calculation.

• The case of non-universal soft masses at the GUT
scale was analysed in [8]. However, in such a case, the
predictions for µ → eγ exceed the current limits for most
of the parameter space. this is why, in the present work,
we restrict ourselves to the case of universal soft masses at
the GUT scale, assuming the existence of some mechanism

that assures universality and the absence of mixing in the
Kähler potential.

• No constraints on the m0, m1/2 values were discussed
in [8]. Here, however, we choose their initial values so as
to respect the cosmological relic-density constraints, as
discussed in [48].

• To calculate within a given fermion mass texture,
we need to estimate the mixing both of the neutrinos and
of the charged leptons. In the case of U(1) models, all
the mass matrices are given as power expansions in the
parameters ε, ε, and it is not possible to fix uniquely the
O(1) coefficients cij needed to obtain masses and mixings.
There is a similar ambiguity in flipped SU(5) models.

For our numerical study here, we adopt for the three
U(1) models discussed in Sect. 4 an approach similar to
that of [8], commenting later on the expectations for other
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Fig. 4. As in Fig. 1, but for texture C of Sect. 4
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Fig. 5. As in Fig. 1, but for tan β = 10

classes of models. In [8], a set of O(1) coefficients cij was
used which led to the correct mass spectrum, with the
mixing in the charged-lepton mass matrix emerging as a
prediction. Nevertheless, the choice of cij is not unique,
since many sets can give the same mass eigenvalues but
different mixing. In order to test the sensitivity of our re-
sults to this arbitrariness, here we use three representative
sample sets of coefficients cij ≡ cji for each of the U(1)
textures presented in Sect. 4, namely

A) c12 = .87, c22 = .59; c12 = .89, c22 = 1.44;
c12 = .61, c23 = .79

B) c12 = 1.68, c22 = .56; c12 = 1.70, c22 = 1.45;
c12 = 1.41, c23 = .79

C) c12 = 2.59, c22 = 1.27; c12 = 2.34, c22 = .79
c12 = 2.75, c23 = 1.13

which we denote hereafter by A1,2,3, B1,2,3 and C1,2,3, re-
spectively.

We plot in Figs. 2, 3 and 4 the branching ratios for
µ → eγ and τ → µγ in the textures A, B and C, re-
spectively, assuming in each case the representative value
m1/2 = 250 GeV, tanβ = 3 and allowing both possi-
ble signs of µ. In each of Figs. 2, 3 and 4 the spread in
the numerical results reflects the uncertainties associated
with the numerical coefficients cij . This spread immedi-
ately warns us that the results shown in Figs. 2, 3 and
4 should be understood only as order-of-magnitude esti-
mates. We note that the predictions for the µ → eγ de-
cay branching ratio in textures A and B are particularly
sensitive to these coefficients, whilst τ → µγ reaction is
generally less sensitive, as also is µ → eγ in texture C. In
all cases, the µ > 0 choices (solid curves) lead to an en-
hancement of the branching ratios compared to the choice
µ < 0, at least for larger values of m0. We note also that,
for a small range of m0 values that depends on the texture
and the specific choice of the coefficients, there is poten-
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tially a strong cancellation of the mixing effects, leading
to a considerable suppression of the branching ratio.

Among the three cases studied, texture B generally
gives the highest predictions for BR(µ → eγ). This is,
of course, a simple consequence of the fact that the (1,3)
mixing matrix element is larger in case B than in case A.
Texture C, on the other hand, predicts BR(µ → eγ) <
10−12 for all cij choices. As for BR(τ → µγ), we note
that it is in general enhanced for small m0 values. Also,
texture A may yield BR(τ → µγ) as high as 10−7.

We present predictions for the larger value tanβ = 10
in Fig. 5, for both the µ → eγ and τ → µγ branching
ratios, using the three sets of coefficients cij for texture
A. Again, the plots are obtained using the representative

value m1/2 = 250 GeV and the two possible signs of µ-
parameter. The results are qualitatively similar to those
for the tanβ = 3 case in Fig. 2, though the µ → eγ branch-
ing ratio now tends to lie above or close to the present
experimental limit for two choices of the coefficients cij .
Only in the third choice of cij is BR(µ → eγ) well be-
low the present experimental limits. We also observe in
the right-hand plot of Fig. 5 that the branching ratios for
τ → µγ are enhanced compared to the low tanβ case.

We show in Figs. 6, 7 predictions of the branching
ratios for the radiative decays µ → eγ, τ → µγ in the
(m0, m1/2) plane, specializing to texture A, using tanβ =
3 and 10 and assuming µ < 0. In general, the branching
ratios tend to decrease as m1/2 increases. If tan β = 3 as



330 J. Ellis et al.: Charged-Lepton-Flavour Violation in the light of the Super-Kamiokande data

shown in Fig. 6, case A1 predicts values of BR(µ → eγ)
compatible with the experimental bound in most of the
cosmologically preferred region. In contrast, if tanβ = 10
as shown in Fig. 7, acceptable BR(µ → eγ) rates are found
only for large values of m0 ≥ 400 GeV). In this latter case,
the A3 choice of coefficients is more favoured. We do not
display similar plots for the other two textures, but note
that texture B is more sensitive to the choice of coefficients
cij , and that for certain choices of them it predicts values
close to the experimental bounds for a large portion of the
plane m0, m1/2 ≤ 500 GeV.

The light-shaded areas in Fig. 6 correspond to the re-
gions of the (m1/2, m0) plane that are excluded by LEP
searches for charginos and by the requirement that the
lightest supersymmetric particle not be charged [48]. The
dark-shaded areas in Fig. 6 are those where the cosmolog-
ical relic density is in the range preferred by astrophysics.
We see that both the decay modes µ → eγ and τ → µγ
could well be measurable throughout this astrophysical re-
gion. In particular, we find BR(τ → µγ) > 10−9 in most
of this region, and for m1/2 < 220 GeV and m0 < 110 GeV
there are regions where BR(τ → µγ) > 10−8. These obser-
vations also apply to texture B, and to the choice tanβ =
10 (not shown). The predictions of texture C may also
reach above 10−9, but reach above 10−8 only in a small
portion of the cosmologically-favoured region. Texture B
leads to the highest predictions for BR(µ → eγ), typi-
cally above 10−12 for most of the cosmologically-favoured
region of the (m0, m1/2) plane, and even reaching values
above 10−11 in a small portion of the parameter space.
The sensitivity of the branching ratios to different choices
of coefficients cij can be seen by comparing the solid and
dashed lines in Fig. 6. For tanβ = 3, the obtained values
for the branching ratios under consideration are smaller.
A considerable sector of the cosmologically-favoured re-
gion, leads, however, to values for the branching ratios of
the same order as the ones discussed above.

We show in Fig. 8 the correlation between the µ → eγ
and τ → µγ branching ratios for two different choices of
coefficients cij for each of the textures A, B and C pre-
sented in Sect. 4. In each case, the branching ratios have
been calculated for a sampling of (m0, m1/2) pairs in the
cosmologically-favoured region of [48] for tanβ = 10: sim-
ilar results hold for tanβ = 3. We see clearly how the cor-
relations between the two branching ratios vary with the
choices of the cij coefficients, because of their influences
on flavor mixing. In the two cases A1 and A3 (texture A2
is similar to A1) presented in Fig. 8, the values of the pre-
dicted branching ratios are characteristic for each cij set,
with the case A3 generally predicting smaller ratios for
BR(µ → eγ)/BR(τ → µγ). In the case of texture C, the
dependence of the results on the choice of cij coefficients is
rather different: this texture tends to predict a relatively
large ratio BR(µ → eγ)/BR(τ → µγ).

Finally, we show results for µ−e conversion, using both
penguin and box diagrams. We gave in Sect. 2 an order-
of-magnitude estimate of the branching ratio for this reac-
tion, namely BR(µTi → eT i) ≈ 5.6 × 10−3BR(µ → eγ).
However, as we commented there, the two processes ex-
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Fig. 8. Scatter plot of model predictions for BR(µ → eγ) ver-
sus BR(τ → µγ), assuming tanβ = 10 and µ < 0. The circles
correspond to texture A1, the + to texture A2, the stars to
texture B1, the × to texture B2 the squares to texture C1, the
diamonds to texture C2. Note the characteristic correlations in
the different models

hibit different functional dependences on the AL,R
M/E func-

tions (indeed, as is well known, µ → eγ does not depend
at all on the parameters AE

L,R). Further, in the case of
µ − e conversion there are additional contributions from
box graphs which further complicate the ratio BR(µTi →
eT i)/BR(µ → eγ). In view of the possible improvement of
the experimental sensitivity to µ−e conversion, we present
plots similar to given previously for µ → eγ.

It is instructive to compare the µ − e conversion rate
with the corresponding predictions for BR(µ → eγ), to
explore the effects of penguin and box diagrams. In Fig. 9
we plot the ratio of the µ → e conversion and µ → eγ rates
versus the scalar mass parameter m0. We see immediately
that the ratio is not constant, though its general order
of magnitude is that estimated in (30). The dependence
of the penguin contribution on m0 is shown separately
from the combined effects of penguin and box diagrams,
for the two signs of µ. In the case of µ > 0, BR(µ →
eγ) is relatively enhanced for large m0 values, whilst the
opposite is true for µ < 0.

We show in Fig. 10 the dependence of the µ → e con-
version rate on m0 for the two textures A, B and for the
values tanβ = 3 and m1/2 = 250 GeV. As before, we
choose three sets of numerical coefficients cij for each tex-
ture, and exhibit the results for both signs of µ. Inter-
estingly, cases A1, A2 give a rate close to the present ex-
perimental limit for most of the m0 region explored when
µ > 0. The corresponding predictions for µ < 0 are consid-
erably lower for large m0 values, but converge with those
of the µ > 0 case for small m0. We note that texture B
exhibits greater sensitivity to the coefficients cij than does
texture A.

Figure 11 displays contours of the rate for µ → e con-
version in the (m0, m1/2) plane for the two scenarios A1
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and A3, for tanβ = 3. We see that the former predicts a
rather larger rate, which offers good prospects for obser-
vation throughout the region preferred by cosmology. On
the other hand, scenario A3 predicts a rather lower rate
for µ → e conversion.

We comment at this stage on some of the ambigui-
ties in the results shown above, within the general U(1)
framework studied. We have already explored to some ex-
tent the ambiguity associated with O(1) coefficients in the
Dirac mass matrices for the fermions. The ambiguity in-
duced by simple sign changes can be particularly acute, as
we illustrate with one simple exercise. For example, since
the light Majorana mixing matrix is VMNS = V`V

†
ν , any

modification that changes the relative signs of off-diagonal
entries in V` and Vν could cause large changes in the mix-
ing angles of VMNS , as one changes from destructive to

constructive interference, or vice versa, with intermediate
possibilities corresponding to various phase possibilities
that are not specified by the U(1) symmetry.

As an exercise, using the numerical values of the coeffi-
cients in the case A1 discussed above, we invert the signs of
all the off-diagonal entries in mD

ν , and repeat consistently
all the subsequent steps in the calculations. The implica-
tions for µ → eγ and τ → µγ are shown in Fig. 12, where
we see that BR(µ → eγ) may be increased by about two
orders of magnitude 6, whereas that for BR(τ → µγ) is in-
creased by less than an order of magnitude. This ‘inverted’
U(1) model actually has much larger νµ − ντ mixing than
the ‘uninverted’ version of A1, or indeed the other tex-

6 We find a similar enhancement for the µ → e conversion
rate.
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is encouraging throughout the dark-shaded region preferred by
astrophysics and cosmology [48] in the scenario A1

tures studied previously, agreeing better with the Super-
Kamiokande data. We interpret the difference between A1
and ‘inverted’ A1, on the one side, and between A1 and A3,
on the other side, as indicative of the numerical ambiguity
within any particular texture 7. We see that the predic-
tions for µ → eγ are very variable, bracketing the present
experimental upper limit within a broad range, whereas
the predictions for τ → µγ are more closely bunched, and
likely to be within reach of experiment.

The generality of these features is left for exploration in
the future. There are also other ambiguities, for example
in the choice of the heavy Majorana mass matrix [47],
whose detailed study we also leave for future work.

Before concluding, we make a few more remarks about
non-Abelian models, and about the flipped SU(5) model.
As commented at the end of subsection IV-B, generic non-
Abelian models would fall into our ‘mismatched’ category,
and we would expect them to have relatively large rates
for both µ → e and τ → µ transitions, as a result of their
preference for near-bi-maximal mixing. Therefore, we ex-
pect the prospects for charged-lepton-flavour violation in
these models to be at least as favourable as in the Abelian
models studied here. In the case of flipped SU(5), if we
use naively the matrices displayed in Sect. 5, we find that
the µ → eγ process is rather enhanced, and it exceeds the
present experimental bounds in a considerable region of
the parameter space, at least for some generic choices of
undetermined numerical coefficients. However, since the
plethora of poorly-constrained expansion parameters in-

7 The drastic changes in the ‘inverted’ A1 case may not be
possible in GUT models where the neutrino Dirac matrix is
related closely to the up-quark mass matrix. In such models,
large νµ − ντ may also be arranged by a suitable choice of the
heavy Majorana sector.

troduces ambiguities, as discussed earlier, a complete ex-
ploration of this model is beyond the scope of this paper,
and it may be that the model can survive for suitable val-
ues of these coefficients. On the other hand, the τ → µγ
reaction is highly suppressed, because in this model all the
mixing needed to interpret the atmospheric neutrino data
comes from the neutrino sector, and there is no mixing in
the τ − µ charged-lepton sector.

6 Conclusions

Although family symmetries provide many interesting in-
sights into the hierarchy of fermion masses, there is no
unique framework that fits the available information on
charged fermions and neutrinos. As a result, there is con-
siderable ambiguity, even within the subclass of Abelian
flavour models, in their predictions for charged-lepton-
flavour violation. We have explored some of the range of
possibilities in this paper. Many sets of undetermined O(1)
coefficients in Abelian flavour symmetry models of the
charged lepton mass matrix can fit well the mass spectrum
and the neutrino data, but vary in their predictions for
the branching ratios of rare processes. As examples, three
different sets of coefficients were used to fit the charged
lepton and quark mass matrices in each of three Abelian
texture models. Our studies show that these vary in their
predictions for flavour-changing branching ratios by up to
two orders of magnitude. The good news, however, is that
many of these models seem to be accessible to a new round
of experiments searching for µ → e and τ → µ transitions.
In particular, we would like to re-emphasize the interest
of exploring the branching ratio for τ → µγ down to the
10−9 level or below, as may be possible at the LHC.

In view of their accessibility, and precisely because of
their model-dependence, such rare decays may become
a powerful tool for distinguishing between different neu-
trino textures. As we have seen, textures based on Abelian
flavour symmetries tend to predict relatively small µ − e
flavour mixing, thus leading to rates for µ → eγ, µ → 3e
and µ → e conversion in nuclei that are generically be-
low the experimental bounds, though close enough to of-
fer interesting physics opportunities for experiments with
present and future intense µ sources. On the other hand,
schemes based on non-Abelian flavour symmetries would
tend to predict large mixing in the (1-2) lepton sector.
In this case, larger rates are likely to be found for the
above processes, and in certain textures part of the su-
persymmetric parameter space may already be excluded.
It is likely also that string-derived flipped SU(5) schemes
based on would have large off-diagonal entries in the (1-2)
lepton sector, leading to larger rates for µ → eγ, µ → 3e
and µ → e conversion in nuclei than the simplest mod-
els with Abelian flavour symmetries, though the rates for
τ → µγ would be relatively low.

We conclude by encouraging the community to pursue
actively new generations of experiments to probe charged-
lepton-flavour violation, in both µ and τ decays. Such ef-
forts would complement nicely the physics being revealed
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by neutrino oscillations, and could provide precious insight
into the flavour problem.

Acknowledgements. M.E.G. thanks D. Carvalho for useful dis-
cussions, and his research has been supported by the European
Union TMR Network contract ERBFMRX-CT96-0090.

Note Added
While this paper was in the final stages of preparation, we
received the paper by Feng, Nir and Shadmi in [9], which
makes points similar to ours, in a complimentary way.
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